Ongoing Validation Efforts in Gas-Liquid Flows with Phase Change in System and CFD Codes

> Caleb S. Brooks University of Illinois

NETL Workshop on Multiphase Flow Science Morgantown, WV August 9, 2017

- Two-fluid model
- ➤ Challenges
- Experimental facility
- Multiphase instrumentation
- Validation approach
- > Other ongoing experiments

Two-fluid model with IATE

Two-fluid Model:

$$\frac{\partial(\alpha_{k}\rho_{k})}{\partial t} + \nabla \cdot (\alpha_{k}\rho_{k}v_{k}) = \Gamma_{k}$$

$$\frac{\partial(\alpha_{k}\rho_{k}v_{k})}{\partial t} + \nabla \cdot (\alpha_{k}\rho_{k}v_{k}v_{k}) = -\alpha_{k}\nabla p_{k} + \nabla \cdot \left[\alpha_{k}\left(\overline{\tau_{k}} + \tau_{k}^{T}\right)\right] + \alpha_{k}\rho_{k}g_{k} + v_{ki}\Gamma_{k} + M_{ik}$$

$$\frac{\partial(\alpha_{k}\rho_{k}h_{k})}{\partial t} + \nabla \cdot (\alpha_{k}\rho_{k}v_{k}h_{k}) = -p_{k}\frac{D_{k}}{Dt}\alpha_{k} + \nabla \cdot \left[\alpha_{k}\left(\overline{q_{k}} + q_{k}^{T}\right)\right] + a_{i}q_{ki}^{"} + \phi_{k} + h_{ki}\Gamma_{k}$$

 $I_k = a_i \times Mean$ Interfacial Driving Flux

$$a_i \equiv \frac{1}{\Delta t} \sum_{j} \frac{1}{v_{ni,j}}$$

I

Challenges in 1-D codes

• Nuclear system codes 'built' for high pressure, high flow

Fullmer et al., PNE, 2016

- Large error in void fraction under low pressure, low flow
- Passive safety systems
- Natural circulation

Challenges in multi-D codes

• Phase distribution – Interfacial forces

Sharma et al., NED, 2017

Experimental Capability: Heated annulus

Facility Specifications		
Geometry	Vertical internally-heated annulus	
Channel Length	5.03 m	
Heated length	3 m	
Annular gap	3.81 cm (D _o), 1.91 cm (D _i)	
Pressure (gauge)	0 ~ 1 MPa	
Heat Flux	$0 - 300 \ kW/m^2$	
Velocity	0 ~ 5 m/s	

Multiphase Thermo-fluid Dynamics Laboratory, NPRE, University of Illinois

Experimental Capability: Heated annulus

Multiphase Thermo-fluid Dynamics Laboratory, NPRE, University of Illinois

Experimental domain

- Model development and benchmark
 - Subcooled boiling
 - Condensation

System code validation: DOE- NEUP: Natural circulation

Validation approach- NEUP

8

Multiphase Thermo-fluid Dynamics Lab

- Critical heat flux measurement
- Wall nucleation measurement
- Effect of gap thickness on boiling heat transfer
- Sub-atmospheric boiling
- High speed imaging, pressure, temperature.
- Boiling surface engineering (coatings, lasertexturing, wettability patterning, etc.)

Facility Specifications		
Geometry	Vertical rectangular	
	channel	
Channel Dimensions	99.8 cm x 1.27 cm x 1.27	
	cm (variable)	
Heated Surface	10.8 cm x 1.27 cm	
Pressure (gauge)	-0.08 ~ 1 MPa	
Heat Flux	$0 \sim 2 MW/m^2$	

Multiphase Thermo-fluid Dynamics Laboratory, NPRE, University of Illinois